Search results for " Myostatin"

showing 3 items of 3 documents

Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses.

2018

Background Cancer cachexia increases morbidity and mortality, and blocking of activin receptor ligands has improved survival in experimental cancer. However, the underlying mechanisms have not yet been fully uncovered. Methods The effects of blocking activin receptor type 2 (ACVR2) ligands on both muscle and non‐muscle tissues were investigated in a preclinical model of cancer cachexia using a recombinant soluble ACVR2B (sACVR2B‐Fc). Treatment with sACVR2B‐Fc was applied either only before the tumour formation or with continued treatment both before and after tumour formation. The potential roles of muscle and non‐muscle tissues in cancer cachexia were investigated in order to understand th…

MaleTUMOR-BEARING MICElcsh:Diseases of the musculoskeletal systemCachexiaprotein synthesisActivin Receptors Type IIMDSCphysical activityAcute phase responseKaplan-Meier EstimateACTIVATIONActivinMiceNeoplasmsOrthopedics and Sports MedicineTOR Serine-Threonine Kinasesactivinlcsh:Human anatomyII RECEPTORSRecombinant ProteinsProtein TransportLivermyostatinPROTEIN-SYNTHESISSKELETAL-MUSCLECytokinessyöpätauditInflammation MediatorsACUTE-PHASE RESPONSE3122 CancersINHIBITIONlcsh:QM1-695acute phase responsePhysiology (medical)Cell Line TumorAnimalsHumansMuscle SkeletalActivin; Acute phase response; MDSC; Myostatin; Physical activity; Protein synthesis; Orthopedics and Sports Medicine; Physiology (medical)Physical activityMyeloid-Derived Suppressor CellsMyostatinXenograft Model Antitumor AssaysDisease Models AnimalACTIVIN-APHYSICAL-ACTIVITY3121 General medicine internal medicine and other clinical medicineproteiinitEXPERIMENTAL CANCER CACHEXIAlcsh:RC925-935Protein synthesislihassurkastumasairaudetBiomarkersSpleenJournal of cachexia, sarcopenia and muscle
researchProduct

Growth hormone replacement therapy prevents sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant defenses.

2013

The aim of our study was to elucidate the role of growth hormone (GH) replacement therapy in three of the main mechanisms involved in sarcopenia: alterations in mitochondrial biogenesis, increase in oxidative stress, and alterations in protein balance. We used young and old Wistar rats that received either placebo or low doses of GH to reach normal insulin-like growth factor-1 values observed in the young group. We found an increase in lean body mass and plasma and hepatic insulin-like growth factor-1 levels in the old animals treated with GH. We also found a lowering of age-associated oxidative damage and an induction of antioxidant enzymes in the skeletal muscle of the treated animals. GH…

Malemedicine.medical_specialtyAgingSarcopeniaIGF-1. Mitochondrial biogenesis Myostatin p70S6KHormone Replacement TherapyMyostatinProtein degradationmedicine.disease_causeAntioxidantsInternal medicineMedicineAnimalsRats WistarMuscle Skeletalbiologybusiness.industryProtein turnoverSkeletal muscleProteinsmedicine.diseaseMitochondria MuscleRatsSomatropinEndocrinologymedicine.anatomical_structureMitochondrial biogenesisSarcopeniaGrowth Hormonebiology.proteinBody CompositionGeriatrics and GerontologybusinessOxidative stressThe journals of gerontology. Series A, Biological sciences and medical sciences
researchProduct

Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments

2021

Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor prognosis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers, as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and respiratory muscle wasting was also associated with improved survival. However, the definitive proof tha…

tumorCachexiaActivin ReceptorsActivin Receptors Type IIMyostatinReviewchemotherapymulti-organType IIsurvivalCachexiaNeoplasmsmedicineRespiratory muscleHumansActivins; Cancer cachexia; Chemotherapy; Mortality; Multi-organ; Muscle wasting; Myostatin; Survival; Tumor; Activin Receptors Type II; Cachexia; Humans; Neoplasms; Signal Transduction; Survival Analysislcsh:QH301-705.5Wastingsoluviestintäbiologysyöpähoidotbusiness.industryactivinsCancerSkeletal musclemuscle wastingGeneral MedicineActivin receptormedicine.diseaseSurvival AnalysismortalityBlockademedicine.anatomical_structurelcsh:Biology (General)myostatinCancer researchbiology.proteinproteiinitmedicine.symptombusinesshenkiinjääminenlihassurkastumasairaudetSignal Transductioncancer cachexia
researchProduct